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ABSTRACT

This report considers the irrotational motion of an incompressible, inviscid

liquid contained in mobile tanks of arbitrary shape. Hydrodynamic equations

are derived for six degrees of freedom. All quantities are written in terms of

a coordinate system which moves with the tank. The pressure, forces, moments,

and surface wave height are all obtained in terms of nondimensional parameters.

For tanks with an axis of symmetry and three degrees of freedom, these equations

are matched with corresponding equations of motion of two mechanical systems:

spring-mass and pendulum.
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SECTION 1

INTRODUCTION

The effect of liquid propellant motions must be considered in the design of most liquid-

rocket-powered missiles and space vehicles. For the most part, the propellant motion

problem is one of missile stability and control. Generally, the propellant motion

interacts with both the control system dynamics and the vehicle dynamics, which also

couple with each other. The natural frequencies of the oscillating propellants are

often closer to the rigid body control frequencies of the vehicle than to the elastic

body frequencies. Indeed, if the natural frequencies of the propellants in the tanks

become too close to the control frequency of the vehicle or the natural frequency of

the control sensor, the situation may become critical. Under these circumstances,

the oscillating propellants exert large forces and moments, which, in turn, may satu-

rate the control system and ultimately lead to structural failure oi" the vehicle. Thus,

the response of the forces and moments exerted by the oscillating propellants on the

vehicle must be sufficiently well defined analytically that the effects can be integrated

into analyses of the overall system dynamic behavior. Generally, this is accomplished

by a synthesis of the appropriate hydrodynamic equations, in which equivalent mech-

anical (mathematical) models composed of sets of simple spring-mass-dashpot or

pendulums are devised. These are then combined with similar representations for

other dynamic elements of the vehicle, and thus the overall system dynamic behavior

can be determined by analog or digital techniques.

For the most part, recent papers in the field deal with specific details regarding the

dynamic behavior of liquids in moving tanks under diverse conditions. The methods used

in the majority of these studies are varied, and the assumptions are based on certain

approximations which are often rather confusing and difficult to justify. It is beyond

the purpose of this short review to discuss all these papers in detail. However, a study

of these past efforts discloses a lack of agreement as to the exact analytic statement

of the problem. In many instances the boundary conditions are in error, especially at

the free liquid surface when the tank is undergoing pitching excitation. Generally,

these errors can be attributed to conceptual misunderstandings, some of which, from

one point of view fortunately, have not been particularly significant when the tank has

been considered as rigid, or when the fundamental equations have been linearized.

Methods for calculating the dynamic response of liquids in moving tanks have been

developed for cylinders of circular, elliptical, and rectangular cross sections with

flat rigid bulkheads. These solutions make use of the technique of separation of vari-

ables. In fact, since the pertinent differential equation for the liquid behavior is

Laplace's equation, a linearized solution can be found for any rigid cylindrical tank

whose cross section is such that Laplace's equation is separable in the three dimension-

al cylindrical coordinate system, one of whose coordinate surfaces is the tank cross-
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sectional boundary. Nevertheless, new and unusual tank configurations warrant con-

sideration in the design of present day missiles and aerospace vehicles.

The object of this report is to rigorously derive the pertinent hydrodynamic equations

for a missile tank of arbitrary shape which is allowed six degrees of freedom -- three

rotational and three translational. Since the registering and control instruments used

on missiles and aerospace vehicles are generally mounted directly on the vehicles,

it is clear that measurements recorded on these are referred to vehicle-fixed or liquid

tank-fixed axes, which are thus axes moving with respect to some inertial frame. It

then becomes particuarly convenient to write all quantities, both absolute and relative,

in terms of the moving coordinate system. It is in connection with the form of the

equations of motion and the boundary conditions referred to tank-fixed axes that

apparent conceptual misunderstandings have arisen in the literature.
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SECTION 2

DERIVATION OF EQUATIONS FOR SLOSHING MOTIONS

IN TANKS OF ARBITRARY SHAPE

2.1 BASIC EQUATIONS FOR SIX DEGREES OF FREEDOM. Consider a mobile tank

of arbitrary geometry, partially filled with a perfect incompressible liquid. Suppose

the tank to be subjected to a constant or nearly constant acceleration along a given

direction. Then, in the absence of all other accelerations, the free surface of the

liquid in the tank becomes a plane normal to the direction of constant acceleration;

i. e., this axis is colinear with the exterior normal to the undisturbed free surface of

the liquid in the tank. Assume the tank to undergo angular and linear accelerations

in three mutually orthogonal directions, one direction being the direction of constant

acceleration. These disturbances are presumed to be small; the squares and products

of these quantities and their derivatives axe small in comparison with the quantities

themselves, hence they will be neglected (i. e., only linear effects are considered}.

It is convenient to refer the motion of the liquid to a translating and rotating coordinate

system fixed in the tank. In the ensuing analysis, the convention used is that Latin

indices take on the values 1,2, 3. If in some expression an index occurs twice, the

expression is to be summed with respect to that index over its range of values.

Let Yi be the coordinates of a point referred

to a Cartesian coordinate system, Yi, fixed in

space, and let xibe the coordinates of a trans-

lating and rotating system, x i, {see Figure 1}.

The origin of the system x i is assumed to be

located at the undisturbed center of gravity of

the liquid. The coordinates of the two systems

are related by

Yi = zi + aji xj (2.1)

x i = aij (yj - zj) (2.2)

\ xi

yi _"

!

Yi

Figure 1. Coordinate Systems

If _i are components of a vector referred to Yi' the components, Oi' of this vector in

system x i are related to _i by

')i = aij 5j (2.3)

'_i = aji ')j (2.4)
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In (2.1)through (2.4), z i (components measured in the fixed system) measures the

instantaneous displacement of the origin of x i with respect to the origin of Yi, and

aij = cos (xi,Yj) measures the instantaneous rotation of the x i axis with respect to Yi"

The aij are functions of time satisfying the equations

aik ajk = 5ij (2.5)

where 5ij is the Kronecker delta; i.e.

I 0 if ii/j
5ij I

1 if i=j

and

dajk

aik dt - ¢ijk _k {see Appendix A) (2.6)

where ¢ijk is the alternating tensor; i.e.

¢ijk= {

1 if ijk is a cyclic permutation of 1,2, 3

-1 if ijk is an acyclic permutation of 1, 2, 3

0 if any two subscripts are equal

The wj are the components of the angular velocity as measured in the rotating system.

Differentiate (2.1) with respect to t to get

- dYi dzi +[ d i] dxjqk--- d"t-= d"t- _aj xj + aji _ (2.7)

dyi

The components of _ referred to the moving system are

dy i dz i [ daji]x d_ (2.8)qk---aki-_-=aki-_ + aki-_- j ]+akiaji- _-

Use (2.5), (2.6), and the properties of the alternating tensor to reduce (2.8) to

d

qk = Uk + Ckij wi xj + _-_ xk (2.9)

dz i

where u k - aki -_- axe the components of the translational velocity of the origin of x i

referred to the system x i.
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Referred to a fixed axis, the Eulerian equations of motion for an incompressible liquid

are

d 1 _p

_i = _i ? _yi (2.10)

where Fi are the components of the body force vector, p is the pressure, p is the den-

d

sity of the liquid, and _-_ represents the total (material) deri_ ative.

From (2.7) and (2.8)

qi = aikqk and qk = aik qi (2.11)

Differentiate the first equation in (2.11) with respect to t.

dqi[d ] dd--t" = _ aik qk + aik_ qk (2.12)

Then use (2.6), (2.10), and (2.11) to obtain

or

dqi [ 1 ]

dqi 1 5 p

d-_ + Cikj wk qJ = Fi p_x i

(2.13)

(2.14)

In (2.14) F i = aik Fk are the components of the body force measured in the moving

system, x i, and

5P 3P 5Yk 5P [ 5zk ] _P- - + 5 ij 5 Yk5x i 5yk 5xi 5yk 5x i aJ k = aik
(2.15)

Substitute the value of qk from (2.9) into (2.14) to obtain

dui _ dWk-dt-+ ¢ikj ¢°kUj + 2¢ikj ¢°k--+¢ikj dt xj

d 2 1 5p

+ Cikj Wk_jfm w_x m+-x i= F i
dt 2 p 5 x i

(2.16)
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dui dx i

Let a i = -_- + Cik j _k uj and _ = vi, where the a i are the components of the absolute

acceleration of the origin of the translating and rotating system, xi, in that system.

With this notation, (2.16) becomes

d da_

_vi+2Cikj _kVj = F i- ai-¢ikj d-_-xj

1 3p
- -- _ (2.17)

-eikjcj_m_k_Xm p _xi

(Recall that ¢ikrn Cpsm = Sip 5ks - 8is 5kp) (2.18)

Referred to the moving axis, the equation of continuity for the Eulerian viewpoint is

_p
[pvd : 0 (see Reference 1, p. 12)

For an incompressible liquid

__.eP+ vi _-_ = o
_t 5x i

Thus it follows from the continuity equation that

v.=O
5x i x

If the liquid in the tank of the missile behaves as an irrotatiou_I liquid

5v k 5v i

_x i -sx k

(2.19)

(2.20)

(2.21)

(2.22)

Differentiate (2.17) with respect to x i and assume that the orders of differentiation

may be interchanged to obtain

[_ bv i 52vi } 3vj 5 dC_k

t _x i + vj g_xij + 2¢ik j Wk bx i - b xi(Fi-ai) -_ikj -'_-" 5ij

1 b21) bvj 5v i

-CikjCjn mwkc° nSim- _5xibx i 5xibx j
(2.23)
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The first term on the left hand side of (2.23) vanishes because of the incompressibility

condition. The second term vanishes because of irrotational motion

vj 5 v i

(Cikj  jki

vj

= ¢jki Wk _.

(interchange dummy indices)

(from 2.22)

vj
= -¢ikj Wk--

x i

and a quantity equal to its negative must equal zero. )

The first term on the right hand side of (2.23) vanishes because F i - a i is independent

of xi; the second term vanishes because elk i = 0. From {2.18)

- ¢ikj Cjni = - (kji Cjni

= -(6kj 5jn - fkn 6j j)

= - (Skn - 3 6kn) = 2 6kn

Thus (2.23) reduces to

1 _2p 5vj 5vj

- 2 _i _i
p _ xi_ xi 5xibx i

(2.24)

Linearize (2.24) to obtain

1 b2p
.... _- 0

P bx i _x i
(in the volume of the liquid) (2.25)

which must be solved subject to boundary conditions at the free surface and the tank

walls.

The boundary conditions may be obtained from the principle of continuity which states

that the liquid and boundary surface with which contact is maintained have equal com-

ponents of velocity normal to the surface. Let xi_be the coordinates of a surface

measured relative to the tank-fixed coordinate system, x i. Then the boundary condi-

tions may be expressed on all surfaces as

v iv i=v i _i_ (2.26)
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(In the remaining analysis a total time derivative in the moving system is designated

by a dot. )

To use (2.17), linearize the equation to obtain

1 b___p_p
_'i= Fi - ai - _ikjCbkxj -p b xi (2.27)

Since the normal vector is assumed to be independent of time, differentiate (2.26) with

respect to t and substitute the value of _'i from (2.27) into the resulting expression to
obtain

vi Fi- ai- ¢ikj _kXj -_ =Yi (2.28)

Thus, the boundary conditions are

(over all surfaces) (2.29)

2.2 FORMULATION OF BOUNDARY VALUE PROBLEMS

2.2.1 Definitions. The problem at this point is to solve the partial differential

equation

1 52p

P _ xi _ xi
- 0 (throughout the volume of the liquid) (2.30)

subject to (2.29). For convenience, let _(x) _ ¢(Xl, x2, x3) etc. in the following

discussion. To simplify this problem, let

where

P= -c_ixi +L2 [ ]p _bi ¢_i - _1 x2 x3 + _2 Xl x3 + ¢_3 Xl x2 + _ + C(t) (2.31)

¢i--_i(x)

--_(x,t)

_i = -F i + ai

_3 is assumed to be constant (constant thrust) and L is the distance between the

undisturbed center of gravity and the undisturbed free surface of the fluid, measured

along the x3-axis
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2
-0 (2.32)

The boundary conditions for _bi are defined over all surfaces as

_bI 2 x3

Pi 5x i L 2 V2

_b3 2 x 2

vi _ L 2 v1

(2.33)

(2.34)

(2.35)

The form of (2.31) and conditions (2.33), (2.34), and (2.35) are chosen so as to make

the boundary conditions (2.29) reduce to the simple form of (2.38). Substitute the

value of p from (2.31) into (2.29) and make use of the boundary conditions on the @i
to obtain p

as
u i '_i_ (over all surfaces) (2.36)

ui 5x i -

Thus

and

as
Ui _ = 0 (along the rigid tank surfaces) (2.37)

¢ "'* (at the free surface of the liquid) (2.38)
Vi_ii = -Vixi

Assume that the free surface of the liquid is given by

x_= ,[L+77(X1, x2, t)] 5i3 (2.39)

is assumed to be small (small shallow oscillations) so that the normal to the middle

surface is approximated by the normal to the undisturbed free surface; i, e.

I)i_ 5i3 (2.40)

on the free surface of the liquid, and the value of ----- on the free surface is approxi-
• = . .38 t_X3mesmately equal to its value at x 3 L Thus, (2 ) e

--o-(_)x3: L : -_ (2.41)
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2.2.2 Forces and Moments. The dynamic condition used to determine 77 is that the

pressure be independent of position on the free surface. On the free surface the pres-

sure is given by

(_)x = C(t)- a3 L+ [-al Xl- a2 x2 - a377 + L2_i wi
3= L+17

- Wl x2 (L+_/) - w2 Xl (L+17) - w3 Xl x2 + _I (2.42)

Thus, the dynamic condition requires that the bracketed term in (2.42) must vanish.
Assume that

(@i) x3 = L+_ _ (_bi) x 3 = L

(#)x 3 = L+7/"_ (_)x3 = L

and that w i varies slowly in time; thus products of _i with itself and with 77 are suffi-

ciently small in comparison with the terms themselves that these products may be

neglected. Thus

_317=-C_lXl-_2x2+ L2_biwi-WlX2L-c_2Xl L-cO3XlX2+¢ (2.43)

where _i and _ are evaluated at x 3 = L

Consider the free vibrations of a system, described by

_xi 5xi
=0 (throughout the volume of the liquid)

-0
Yi 5x i

(at the tank .walls)

_o
_2_b ° +a3 _x3 _ 0
5t 2

(at the undisturbed free surface

of the liquid, x 3 = L)

(2.44)

Assume _bo = _o (Xl x2 x3) eiwt to obtain
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b2 _o
=0

5x i 5x i

_ =0
Vi b x i

(throughout the volume of the liquid)

(at the tank walls)

(at x 3 = L)

(2.45)

Let the eigenfunctions be given by _bmn (Xl,X2,X3) and the corresponding values of w 2

by _2 n. Define Kmn by

¢o2 Kmn
mn

= (2.46)
_3 L

Then the _bmn have the properties

b2 _mn

'-- -- 0

bx ibx i

5 4_mn

Vi _=0
5x i

b_)mn _ Kmn

5 x 3 L

(throughout the volume of liquid)

(at the tank walls)

_bmn Cat x 3 = L)

(2.47)

and

m=l n=l

Amn _bmn e iwmnt

Assume that the eigenfrequencies and eigenfunctions associated with this boundary

value problem have been determined. Express ¢ and _? in terms of the eigenfunctions

for the free vibration; i.e., assume

_b (Xl, x2, x3, t) = _ _ )- mn (t) qbmn(X 1, x 2, x3) (2.48)
m=l n=l

and

co oo

l"/(x 1,x 2't) = _

m=l n=l

_mn(t) Cmn(Xl, x 2, L) (2.49)
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The relationships between the ),mn(t) and _ mr_t) are determined from (2.41), using

the properties of _bmn (Xl,X2, x3) in (2.47) as follows.

CO CO

x3=L m=l n=l

_mn

X mn (t) _ (Xl, x2, L)
x 3

KEn
= _ _ Xmn(t) T_nm(xl' x2'L)

m=l n=l

CO

=-Z,Z
m=l n=l

_" mn(t) @mn(Xl, x 2, L)

(2.50)

Since this relationship must hold for all Xl, x2, and t

L
k mn(t) = _'mn(t)

Kmn

and

¢(Xl,X2, x3,t ) :_ _ _ L _'mn qSmn(Xl'X2'X3)
m=l n=l Kmn

(2.51)

(2.52)

Thus, from (2.31), the pressure is given as

P = C(t) - _i xi + L2 _i wi - [Wl x2 x3P
+ ¢°2 Xl x3 + w3 Xl x2]

L
m=l n=l K----_ _'mn _mn (xl' x2' x3) (2.53)

With this formulation, boundary condition (2.43) becomes

_:1= n=l}T_"[K-m-mn_'mn+a3_mn] Cmn(xl'x2'L) =-alxl-a2x2

- (x 2 L - L 2 _bl) ¢bI - (x I L - L 2 _b2) w2 - (Xl x2 - L2 @3) cb3 (2.54)

where the _bi on the right side of the equation are evaluated at x 3 = L. Assume that the

right side of (2.54) may be expanded in terms of _ij(Xl, x2, L). This expansion will be
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valid at least in the interior of the region. By making use of the orthogonality proper-

ties of the gbij , (2.54) can be rewritten in the form (see Appendix B for details)

where

K
mn

_mn + °_3 _mn : -Kmn amn °_1 - Kmn bmn a2

  molam 

VTm n=/ x 1 _bmndSamn

UFS

bmnVYmn= f x2 _mndS

UFS

hmn VKmn Ymn = 2f x 3 _bmn v2dS
US

(2.55)

dmn VKmnYmn = 2/ x 1 _mn v3dS

US

VLYmn = f x 1 x 2 _bmndSemn

UFS

fmn VKmn Ymn = 2/ x 2 _bmn u 1 dS

US

V= Lf (@mn) 2dSYmn

UFS

V=/ dV

UV

(2.56)
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The forces on the liquid-tank system have the components, referred to the xi-axis

ax_

F_ =fPPidS =fPvj 5ij clS =/p Vj _--_- dS
S S S

5p

=fx ivj_j dS
S

(Theorem HI)

5j_x_ dV (Theorem I) (2.57)
- A

V

In the equations above, the surface integrals are over the entire surface of the liquid

(i. e., over the free surface and tank walls), and the volume integral is over the entire

volume occupied by the liquid. Substitute the value of the pressure from (2.53) into

(2.57) to obtain (see Appendix C for the details)

O0 O0

F_=-Mai-M _ _ _mn(amnSil +bmnSi2) _'mn
m=l n=l

(2.58)

where M = p V is the mass of the liquid.

The moments may be calculated from

Ti=__ cij kxjv kpdS

5
: f _,jk_ (_jp)dV

V

(Theorem I)

JfV 5p= ¢ijk xj _x k dV
(2.59)

Substitute the value of b_._ppfrom (2.53) into (2.59) to obtain (see Appendix D for the
details) 5Xk

_3[ ,13_,1,23 _,2+I33_,3] M _ Ymn[ [ L(bmn
m=l n=l
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-hm_>_'_-÷_ _ _ml6_ I_,<_n-_m_>Go

- I (2.6o)

where

Ill =p f (x2+X2)dV-4pf x2dV+2pL2f x3_1_,2dS
UV UV US

I21 =p/ XlX2dV-2pL2 / x l@lv3 dS
UV US

I31 =pfJ Xlx3dV-2DL2jf X2_lY 1 dS

UV US

I12 = p x 1 x 2dV- 2p J x 352v2 dS
f

L 2

UV US

I22=P f {x2+x2)dV-4p/ x t dV+ 2pL2/Xlq_2Y3dS
UV UV US

I32=Pf x 2 x 3 dV+ 2DL 2 f x 252yl dS

UV US

I13 = p .f x 1 x 3 dV+ 2pL 2 / x 3_b 3v 2dS

UV US

I23=P f x 2x 3 dV+ 2DL 2 / x 153_3 dS

UV US

i33=p f _x2÷,,ff)dV-4p f x22dV÷2pL 2 f x2_3,,lds
UV UV US

(2.61)

and the other constants are given by (2.56).

2.2.3 Results. For a mobile tank with arbitrary geometry, subject to acceleration

and having six degrees of freedom (three translational and three rotational), the per-

tinent quantities have been obtained. That is,

a. The moments are given by (2.60).

b. The forces are given by (2.58).
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c. The pressure is given by (2.53).

d, The surface wave height is given by (2.49).

The eigenfunctions in these equations are given by the solutions of the following bound-
ary value problems.

_2@mn 52_bk

- 0 (through the volume of the liquid) (2.62)
bx i _x i 5x i _x i

5 ¢mn

Yi b x i - 0 (at the tank boundary) (2.63)

5 _mn Kmn

5 x 3 L
_mn (on the quiescent free surface) (2.64)

L 2 v i _ = 2 x 3 v 2 (over all surfaces)

L 2 v i 5 xi 2 x I v 3

L 2 v i 5 xi - 2 x 2 v I

(over all surfaces)

(over all surfaces)

(2.65)

These boundary value problems cannot be solved until a specific tank shape is given.

For the special case where the tank has an axis of symmetry and three degrees of free-

dom, it is possible to develop a technique to obtain the eigenfunctions and eigenvalues
numerically. This is done in Reference 2.

The _mn are given by (2.55), where the Kmn are given by the solution to the above
boundary value problem.
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3.1
by onetranslational component,onerotational component,andthe constantaccelera-
tion alongthe axis of the missile, the computationsinvolvedin finding the pertinent
quantitieswill simplify as shownin the following paragraph.

SECTION3

DEGENERATECASE(THREEDEGREESOF FREEDOM)

REDUCTION OF THE EQUATIONS FROM SECTION 2. If the problem is described

In the equations of the previous sections, let ¢o2 = ¢o3 = u 1 = O.

The moments (from 2.60) become

Ti=- _11111 511-I21 5i2-I31 6i31 -M _ n__lTnm[IL(bmn- hmn)_'mn
m=l -

+ °_3 bmn _mn 15il + IL(amn - dmn) _'mn -el3 amn _mnl 5i2

- M _ _ Tmn(amn6il+bmn6i2) _'mn (3.2)
m=l n=l

The forces (from (2.58)) are

Fi= - _3 M6i3 -M _26i2

The pressure (from (2.53)) is

= P I C(t) -(_2 x2 - _3 x3 - (x2 x3 - L2 _bl)_1P
L

m=l = Kmn

The surface wave height (from (2.49)) is given by

(Xl'X2't) = _[_ _ _mn (t) _mn (Xl'X2'L)

m=l n=l

(3.3)

(3.4)
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where the _bnm is given by the solution to the boundary value problem described by

(2.62), (2.63), and (2.64) and the _mn are given from

Kmn
(3.5)

3.2 RESULTS FOR AN AXIS OF SYMMETRY. In most cases of interest, especially

in the design of missiles and launch vehicles, the tank is symmetric or nearly sym-

metric about the axis of constant acceleration, the x3-axis. For this situation the

equations for three degrees of freedom are further simplified. Refer the tank to

cylindrical polar coordinates defined by

_a

x I = r cos e /

x 2 = r sin O

X3 = Z

(3.6)

Since the tank is symmetric about the x3-axis, the undisturbed boundary surface of
the liquid enclosed by the tank is a surface of revolution formed by revolving a curve,

shown as ABC in Figure 2, about the x3-axis.

z

b

C --

L

I

iO

l
A

_r

Figure 2. Arbitrary Tank
Cross Section

The origin O is located at the undisturbed

center of gravity of the liquid. The curve

A-B is formed by the tank profile, and the

curve B-C is formed by the intersection of

the quiescent free surface and a plane paral-

lel to and including the x3-axis. The line
AOC is given by the portion of the line r = 0,

which is interior to the liquid volume. In

some cases (e. g., a tank formed with con-

centric cylinders), points A and C may

coincide. Then, C does not necessarily lie

on the x3-axis.

For cylindrical polar coordinates, the com-

ponents of the exterior normal are given by

v1 = sin/3cos 8 ]

U2= sin_sin @

v 3 = -cos

(3.7)
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where E is defined by

dz
tan E = d-_ (3.8)

on the curve ABC.

The element of arc length is given by

ds 2 = dz 2 csc2_ = dr 2 sec2fl (3.9)

To satisfy the boundary conditions and reduce the boundary value problems to ones

independent of 0, let

_1 =sino_I' 1 (r,z), @mn = sin0¢n(r,z)

The boundary value problems become

b2_1 1 5_1 1 _2_I

_+ _1 +-
5r 2 r br r 2 _z2

=0 (interior to ABCOA) (3.10)

_1 _1 2_._z sine
sine b--r'-- c°sE _ = L 2

and

_2@n 1 b ffPn 1 b2_n

2_n +
br 2 r _r r _z 2

=0

(on ABC)

(interior to ABCOA)

(3.11)

(3.12)

@n Kn

3z L _n (along BC) (3.13)

ben 5 @n

sin]_ -_- - cos]_ _--_--= 0 (along AB) (3.14)

With this formulation the forces and moments reduce to

CO

T i=- c51 Ii16i1-M X *Yn [L(bn-hn)_'n + a3 bn_n} 6il
n=l

(3.15)
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where

F_=- ot 3 M5i3 -Mot 25i2 -M _ _nbn_'nSi2
n=l

(3.16)

VTnbn =_ fj? r2_Pn(r,L) dr

K nv_nhn 2_'/B= zr _n (r, z) dz (3.17)
A

v,o ]2= r _n (r, L) dr
C

Ill=P fj (r2cOs20 + z2) dV-4p fj z2dV+2;)L21rrjB zr@ldZ
UV UV A

The pressure and surface wave height are given by (3.3) and (3.4).

A digital computer program has been developed to find the coefficients in (3.17) along

with the eigenvalues and eigenfunctions for any tank whose cross section is composed

of portions of ellipses, circles, parabolas, and/or straight lines. The method will

handle any ring-shaped tank or baffles which are adjacent to a rigid wall. The pro-

cedure and program are described in Report GD[ A-DDE64-062 (see Reference 2).

3.3 CENTER OF MASS NOT COINCIDENT WITH THE CENTER OF ROTATION

3.3.1 Analytic Hydrodynamic Formulas. The motion of the liquid in a missile tank

will obviously interact with the control system and vehicle dynamics. In order to in-

corporate the liquid effects into an analysis of the entire missile behavior for control

purposes, the pertinent quantities must be referred to a coordinate system, fixed in

the missile, which is no longer located at the center of gravity of the liquid.

t

For a three-degree-of-freedom analysis, the origin will be translated along the x 3-

axis to a point, L1, below its original position. Call this new coordinate system xi _.

The problem is described by (from (2.30) and (2.29))

(throughout the volume of the liquid) (3.18)

1 i 5P I i

Yi W = -yi_ (°ti+_ijk cbj xk +'_) (on the boundary) (3.19)
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The primed system is related to the unprimed system with origin at the center of

gravity of the liquid by

Xl I =Xl ' x2_ = x2 ' x31 = x3 + L1 (3.20)

• _ = 5 and vi Vi
• " 5x i, bx i

Thus (3.18) and (3.19) become, for three degrees of freedom

2
1 5 P _ 0 (3.21)

P 5x i 5x i

1 bP ""
p Vi -- = - _2 Y2 - _3 V3 - _1 (x2 V3 - (x3+ L1)UL ) - Vl x_ (3.22)5x i

Since the procedure used from this point on is exactly that used in Section 2, many of

the details will be omitted,

Assume

P = - _2 x2 - a3 x3 - °)1 t](x3-L1 )x2 - L2 @1],+ _ + C(t) (3.23)
P

where

52 _(Xl, x2, x 3, t)

5x i 5x i

551 2x3u2

ui -- _ L25x i

52@1 (x 1, x2,x 3)

5x i 5x i

= 0 (3.24)

(over all surfaces) (3.25)

-0
Yi 5xi

(over rigid boundaries) (3.26)

(3.27)
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Again the dynamic condition used to determine _ is that the pressure be independent

of position on the free surface. Thus from (3.23)

(oP}x3=L+_7 =C(t)-_3 L+[-_2x2-c_317-¢_l I(rI+L-L1) x2

- L 2 _)i}+ @] (3.28)

Use the samewhere, to satisfy the dynamic condition, the bracketed term vanishes.

assumptions made after (2.42) to write the bracketed expression in (3.28) as

_3_ =- c_2x2- 51 [(L-LI) x 2 - L 2_11 +

where _1 and _b are evaluated at x3 = L.

Assume

_7(Xl,X2,t) = _ _ _mn (t) _bmn(Xl,X2, L)
m=l n=l

(3.29)

(3.30)

(_(Xl'X2'x3't) = - m_=1 n=l_ KmnL _.mn(t) _bmn(Xl,X2, X3)
(3.31)

Introduce (3.30) and (3.31) into (3.29), and expand the remainder of (3.29) in a series

of _bnm(Xl,X 2, L). Then use the results of Appendix B to write

Kmn cbI ]L 1 bmn_'mu + _3 _ _mn = -Kmn bmn (_2 + Kmn

- L(bmn - hmn)] (3.32)

With this formulation the pressure will be written as

p=
C(t) -or 2 x 2 -ol 3 x 3 -¢°1 f[(x3 - L1) x2 - L2@1] !

P

m l n l Kin--% 'mn (3.33)

or in terms of the coordinate system xit

pt _ _ _ L2 L1)iD - C(t) -or2 x2_ or3 (x3t L1) - Wl [x21(x3°- 2 L1 ) _1 (Xll, x2', x3 '-
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= 0mn (xl',x_,x31 - LI}

-L _ E K _'mn
m=l n=l mn

(3.34)

The forces on the liquid tank system have the components, referred to the xi t -axis

, f t 5xit

Fit =/p' yi dS = J pt yj _ dS
S S

5p t

= /xit vj -_j_ dS
S

(Theorem I/I)

!

(Theorem I) (3.35)

Use the value of the pressure from (3.34) in (3.35) and integrate (the details axe

given in Appendix E) to obtain

Fi t =- _3 M5i3 -M (_25i2 + LIM _1 5i2

-Mm_=l n=l_ _'mn_mnlamnOil +bmnSi21
(3.36)

The moments may be calculated from

ITi' = ¢ijkXj Vk I pt dS
S

¢

x/ 8p ,
= J_V Eijk j _ dV (Theorem V) (3.37)

Substitute the value of the pressure from (3.34) into (3.37) to obtain (see Appendix E

for the details)

T i = M L 1 (_2 6il - _1 Ill 5il - I21 5i2 - I31 6i3 - M Ymn °t3 bmn _mn
m=l =

+IL(bran-hmn)-Llbmnl_'mn]6il+I-(_3amn_mn+

-dmn)+L1amn]'_mn]5i2+IL(emn-fmn)_'mn]5i31

L(amn

(3.38)
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where

I1{= p / (x_+
UV

12;=. f x 1 x 2dv- 2 OL 2 d

UV US

13;:0 f :1% dv- 20L2f
UV US

x32) dV-4 p / x_ dV+2pL 2 /x3v2_ ldS+L t M
UV US

Xl v3 _1 dS

x2 Vl _1 dS

(3.39)

If the tank has symmetry about the axis of constant acceleration, then referred to

cylindrical coordinates as in Section 3.2

=dmn = =f =0amn emn mn

I2; : 13;: o

Thus, (3.39) reduces to

TI'= ot2MLl-&lI1;-M _._,n[_3bn_n+[L(bn-hn)-Llbnl _'n]
n=l

(3.40)

(3.36) reduces to

T
L

d

J
._---- a __.--_

M 5i3-o_2M5i2 + _)1 LI Mbi2-M _ bnYn_'n 6i2
n=l

Dr

CYLINDRICAL

COORDINATES

(r,O, z)

(3.41)

3.3.2 Parameters for a Cylindrical Tank.

The analysis of the previous section is reduced

for a right cylindrical tank of radius a. In

Figure 3 and the following analysis,

d = distance from the c.g. of the

liquid to the tank bottom

L = distance from the c.g. of the

liquid to the free surface

L 1 = distance from the c.g. of the

liquid to an arbitrary point along

the missile axis

Figure 3. Cylindrical Tank
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kn_ roots of Jl'(kn a) = 0, h = L + d

Jl' I1 _ Bessel functions of the first andsecondkinds, of order one

= -y

The solution of (3.10) subject to (3.11) is

_1- L2 (L-d)_+_- _

_ a)

+d)

From (3° 12), (3.13), and (3.14)

(Pn = cosh kn(Z+d ) J1 ()'n r)

K n = L _'n tanh )'n h

(3.42)

(3.43)

(3.44)

(3.45)

Thus from (3.40) and (3.41)

F_ = - a 3 M

F_ : - Ma2 - LIM_'- M Z bnYn_'n
n=l

TI'= ML 1 a2 +II_ _" -M _ Yn[(x3bn_n
n=l

where
_3 Kn

_'n + ----_ _n = - Kn b n o_2 + Kn [L(bn-hn)-L 1 bn] 3"

The constants in these equations are given by

:Yn = 2--h - X 2 cosh Xn h J1 (kn a)

Yn b =n

cosh knh J l(kna)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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a [ ,cohohi]V_nKnhn- _nn J1 (kna) LsinhZnh- \ _'n )
(3.52)

i11Ld [aLdLd-- y (L3 +d3) a 2= + 2_'a
D 4 2

+h n=l

/ny a\

I(-1)n-1} 2 I1_}

I1( )

The surface wave height is given by

?? = sinO _ _n(t) cosh knh Jl (Xnr)
n=l

(3.53)

(3.54)

3.4 MECHANICAL SYSTEMS. In general, Lagrange's equations tor a moving coor-

dinate system axe, according to Kirchoff

d (bTl+ bT
_ui ! Cij kwj _ = F i

(3.55)

d (_T L _T __TT:
\_i / Eijk c_j_k + _ijk uj 5Uk M.1

(3.56)

d( 55__n)- 5_TT =Qn (3.57)dt 5qn

where u i is the ith component of the velocity of the origin of the moving reference

frame measured along the moving axes; w i is the ith component of the angular velocity

of the body measured along the moving axes; T is the kinetic energy of the system, i.e.

1
T = -_ m (ui+(ij k coj Xk+_i) (ui+¢i£ m c_£Xm+_i) (3.58)

x i is the ith component of the displacement of a mass particle measured relative to the

moving reference system - it is presumed that the relative coordinates, xi, can be

expressed in terms of generalized coordinates and time, i.e.

x i = x i (ql,q2,q3 ..... qn, t) (3.59)
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Fi is the ith component of the force acting on the mass particle measured along the

moving axes; M i is the ith component of the moment action on the mass particle

measured along the moving axes; each qn is a generalized coordinate which describes

a possible independent configurational state of the mass particle; and Qn is the gen-

eralized force associated with qn"

Substitute the expression for the kinetic energy into Lagrange's equations to obtain,

in general

_-_m I{1i + _ijk wj uk + (ijk ¢5j x k + w i wj xj - x i wj wj

+ 2 (ijkWj k k+ x'i] = F.1 (3.60)

_-_m[_ij k xj _k + _ijk xj _'k + 2wi _¢j xj - 2_¢.1 wj xj + w i uj xj - UiWpX p

-Xp COP(ijkWj xk+ wixj xj - x i&j xj] =M i (3.61)

For motion in a plane, set w 2 = w 3 = u I = x I = 0. Equations (3.55) and (3.56) reduce

to

d bT 5T

a(_-uu2)-wi 5--u3 =F2
(3.62)

d(SuT3) bT (3.63)F3

d ( 5T _ 5T 5T _ M1 (see Reference 3, p. 528) (3.64)+u2 - u3

Note that (3.62), (3.63), and (3.64) are acting on the mechanical system. Thus, these

quantities are the negatives of the forces and moments produced by the system. This

property will be used when the equations for the mechanical systems are matched with

the forces on the liquid-tank system.

3.4.1 Pendulum Analogy. To duplicate the hydrodynamic equations by a system

composed of a rigid mass and a number of pendulums, it is necessary to derive the

equations describing such a system in terms of an accelerating coordinate system.

Consider the motion of a pendulum of mass m n and a rigid mass of m o as shown in

Figure 4. In this system, with the x I axis out of the plane of the paper,
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x3

Zv
o:/. , mn ?

Figure 4. Pendulum

o

x2 = 0

x_ = _n' sin 8 n

O

x3 = l o

x3 = _n - _'nc°SOn

¢oI = -_

Thus, the kinetic energy is given by

1 2+ 2 1
T = _mo{lU2+lo_ ] u 3 I +_Io(_, 2

The equation of motion obtained by using the generalized coordinate, On, is obtained

from (3.57).

Thus

I2 lu2+_ (ln-I; cosen)+ 1_ 0n c°S0n[ [/_ sin0n0n[ +[ _ sin0n0n

-fn(0n )2 sin0n} fne°SOn +l -_°_ sinen-_qc°Sen0n + Je' ""' nOnSinOn

+[-q _sinOn+q _nsinenl[_ _cosen[]+a2q cosen+Ua__cosen

+U3fn sin0n-u2q _ sin0n + [_" (_n-_ cos0)

Qn

m-_

(3.66)

For small oscillations, assume On and _ to be small, such that sinO n _ 8n, cosO n _ 1,

and the products of e n and _ and their derivatives can be neglected because of their

smallness in comparison with the quantities themselves. Thus, the bracketed part of

(3.66) vanishes and
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mnln [(_12+_u3)+ ({i3 -_u2) en+ (in-ln) 3"+i n0"n]= Qn (3.67)

From (3.62), (3.63), and (3.64)

(m o

(m o

+ mn)(u2 +_ u3)+Imo_o + mn (In-In cos e)]_ + rnn_0n c°S0n -_ sin0n (3)2

+ 2_nsin0n3_n_qsinon(_n )2 = F2 (3.68)

+ mn)(_l3 -3 u2) -[mo_o(_) 2 + 3°in sinO n+ (3)2

I 11I ___
+ 2_ cOSenO n -I n sins nO n + cosOn(On) 2 (3.69)

-{moio + _'_-_ oo_.)11_+_ u_l- Imol: + mn

+_ sin2enl + Iol_" + mn_ ({J3-3u2) sin8 n -m n (l n

- _ c°SOn) (_ cosO n) 8"n + mn [(sinO n O'n+ cosO n (8n)2)_ sinO n

+ (in-in cos 9n)q sinOn (On)2-2_ [(_)2 sinOn c°SOn On

+ (_n-qC°sOn)_ sinOnOnl] =M1 (3.70)

Linearize (3.68), (3.69), and (3.70) to obtain

"' [(_t2+ 3 *rnnln u3) + (u3 -3 u2) en + (_n-In)_ + in = 0 (3.71)

+ 3 = F3 (3.72)(m o mn) (u3 - u2)

(m o + m n) (it 2 +_ u 3) + [molo + mn (_n-in)] '_" + mn_ 0"n = F2 (3.73)

-[molo+mn(_a-_)l[ u2+3u3]- [mo_o2+ m.(&-_)2+1o]:;

m i , __u2) On = M1 (3.74)- n(ln-in)_O" n + mn_ ([t 3
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For N pendulums, the equations become

N

(mo+ _ mn)({13 -Ju2)= F 3
n=l

=0 (n=l,2 .... ,N)

N N

= n=l l_ = F 2

/ l) /o o)- O_O + mn[_n-it_ ({12+_u3)- olo + +I
= n=l

N • N

- E nan {in -i_ 1i_ "0n + E mn t_ On (53 -'_ u2) = M1
n=l n=l

(3.75)

(3.76)

(3.77)

(3.78)

From (3.32), (3.40), and (3.41), the hydrodynamic behavior is described by

_n

I "_n + a3 a2
Knbn _ + +

Llbn-L(bn-hn) _ = 0
b n

= $
- M_ 3 F 3

(3.79)

(3.80)

co t
-Mot 2 -ML 1_ -M Z bnYn'_n = F2

n=l

co t

M Ll°t2 + I1_ _ -Mn___ 1 Tn {_3bn_n + [L(bn-h n) -Llbnl' n}=T 1

(3.81)

(3. s2)

Thus the force, moment, and surface wave height terms will match for a finite

number of pendulums if the following associations are made

N

m o + _ m n _ M
n=l

N

moi o+ _ Inn (in-i£)--_ ML 1
n=l
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mo_: N )2+Z
n=l

_n

n Lb n

L

n K
n

+I
O

I

--- Iii

L 1 b n - L (b n - hn) L

_n -- bn + Kn

2

m n _ M_ n bn K n

N 2

m o _ M(1-_'Ynbn Kn)
n=l

"_O_

N

N

1-n_ 1= Ynb:Kn

N

Io --. Ii_-mo£ :- _ mn(ln-P- _)
n=l

(3.83)

3.4.2 Spring-Mass Analogy. Consider also

a spring-mass mechanical system as shown

in Figure 5. The kinetic energy, T, of this

system is given by

1 12 2 IT=_m o u3 +(u 2+_o )

1 _,_ Xn)2+ _ nan l(u3

• 2
+ (u2+Xn+'_n) I

1 io_2 (3.84)

inn

x 2

Figure 5. Spring-Mass
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From Kirehoff's relations, the linearized equationsare

(mo+mn) (h2+_u3) + (mo£o+mn_n)_ + mn'_n : F 2 (for each n) (3.85)

(mo+mn) ({13-3u2) = F 3 (3.86)

-(mofo+ mn_ n) (_12+_u 3) -(roof:+ mn_

-mn_n_¢" n - m n x n (u 3-_u 2) = M 1

+ Io)

(3.87)

To obtain the last equation, let x n be the generalized coordinate, and include the

potential energy term _. Lagrange's equation is

0

Inn l({l2+3u3) +_¢'n +£a_] +K_Xn=0

Take a finite number of spring-mass elements; the equations become

(u2+_u3) + _{'n +.fn _ + - 0 (n = 1,2 .... N)
mn

N

(m o+n.._l= mn) (u 3-_u 2) = F 3

N N N

(m o+n.._Imn) (u2+_u3) + (mo_ o+_ mntn)_ + _ mnX_n = F 2
= n=1

-(mofo + n_l mnfn)(fl2+_u3)-(mof:+ _ mnE_+ I O)

N N

- n_l mnEn_n + _ mnXn (h3-_u2) = M 1
= n--1

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)
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Thus, the forces, moments, andsurfacewaveheightwill matchthe mechanical
system's equationsif

_3 -_u2_ °t3

{12 + _u3 _ °t 2

N

+n_ mn_Mm° =1

N

mo£o+n_l mn£n= _ ML 1

2 N 2
molo + _ mnin +Io _ Ill

n=l

_n

xn_K b
n n

L 1b n - L (bn -hn)

J[n_ bn

2
rn n _ MYnbn Kn

. _3 2 2

Kn_-L- M_nbn Kn

m o _ M - "Yn bn Kn

o

N

L1-n_=l"YnbnK n [L1 b n-L(bn-hn) ]

2
1 - _ 3_nbn K n

n=l

, 2 N 2

I° _ IIi - m° i° - n_=I mn in
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SECTION4

CONCLUSION

In this report the hydrodynamic equations describing the dynamic behavior of liquids

contained in tanks of arbitrary shape are derived for a missile with six degrees of

freedom -- three rotational and three translational. These results are summarized in

Section 2.2.3.

For the special case of three degrees of freedom (one translational component along an

axis perpendicular to the axis of constant acceleration and one rotational component

about an axis perpendicular to the two axes previously mentioned) the equations are

simplified and given in Section 3.

In order to incorporate the dynamic liquid behavior into an analysis of the entire mis-

sile for control purposes, the pressure, forces, and moments are rewritten using the

fact that the coordinate system is fixed in the missile but is no longer located at the

center of gravity of the liquid. This is done in Section 3.3.1 for a tank that possesses

symmetry about the axis of constant acceleration but that is otherwise of arbitrary

shape. In Section 3.3.2 the appropriate quantities are given for a circular cylindrical

tank.

The equations of motion of two mechanical systems are presented in Section 3.4. The

parameters from the hydrodynamic solution are matched with the parameters of the

mechanical systems so that the corresponding equations will be identical.

This report is the basis of companion report GD I A-DDE64-062, which describes the

digital computer routine used to obtain the hydrodynamic parameters for tanks of arbi-

trary shape.
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APPENDIXA

ROTATING COORDINATE SYSTEMS

Assume that a rigid body is rotating about an axis in space. Let this axis be designated

by a unit vector which has components ki when referred to the Cartesian coordinate

system y*, fixed in space. Let P:y* be the coordinates of a point at time t= t 1 (see

Figure A). Let the body rotate about axis X i through an angle 5 0 in time 6 t. The

point P will move to P':yi', which lies on the arc of a circle with the center at C:_i

and having a radius of [CP I = [CP'[. The components of a unit vector along the

directed line segment CP are

Yi - _i

"i IcPl (A. I)

Also, the components of a unit vec-

tor along the directed line segment

CP ' are

(A. 2)

Draw a line from P' perpendicular

to the line CP, intersecting CP at

N. The components of avector

along the directed line segment NP'

are, since it will be perpendicular

to both the axis of rotation and CP

:y.

Figure A. Rotating Coordinates

= (A. 3)
u i _ijk lj _ k

It is also true that the direction cosines obey the laws

ki D i = 0 = ki (Y_ - _i) (A. 4)

Since _i are the coordinates of a point on the line with direction cosines ki, itfollows

that

_1 _2 _3

X1 X2 _3

A-I



il eo

Cm

_k = Xk _m

From (A. 4)

_.i¢i--_-iy*

Substitute from (A. 5) into (A. 6) to obtain

Cm
ki ki ), - ki Yi

m

i.e., sincek iX i= 1

_m = km Xi Y_

(no sum ohm, m=l,2or 3)

(no sum on m)

The coordinates of the point P', ]CP] _?i, may be written as (see Figure A)

]CPI,Ti = [CPI cosSO_ i+ [CP I sin60v i

Thus, using (A. 1), (A. 2), and (A.3)

Yi I -_i = (Y_- ¢i} cos 50 + ¢ijkkj (y_- _k ) sinS0

il e.

6 y_= Yi'- Yi*= y_(cos 6 e - 1) + _i (1- cos6 e) - _ijk )'j _k sin 5 e

. .
+cij kkj YkSmS0

The third term on the right hand side of (A. 11) may be written as

_t
_ijk Xj kkX m Ym sin 50 = 0

since

_ijk lj k k = 0

Thus, expand cos 50 and sin 60 in a Maclaurin series to write (A. 11) as

50)2 ]y*--(¢i- yi5t2.-V-+... +¢*jkxJ_ [6° (_°>33,+""]

(A. 5)

(A. 6)

(A. 7)

(A. 8)

(A.9)

(A. I0)

(A.11)

(A. 12)
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Divide (A. 12) by 5t and take the limit as 5t and 50 approach zero to obtain

dy_ lim 5y_ dO

dt - St-.0 5t - (ijkkj y_ _- (A. 13)

where dO = lim 50 is the angular velocity.
dt 5t-_0 5t

referred to the system y_are

The components of the angular velocity

dO
_2j = kj -_ (A. 14)

Thus

dY i

dt- _ijk _2j y_ (A. 15)

Equation A. 15 gives the instantaneous rate of change of a point on a rigid body due to

the rotation of this body about an arbitrary axis.

Consider a rectangular Cartesian coordinate system obtained from y_by a rotation

x i = aij yj (A. 16)

The inverse transformation is

y.
i = aji xj (A. 17)

where

aij =cos (x i, yj )

For a general rotation, aij = aij(t ) .
to t to obtain

Differentiate the identity aik ajk = 5ij with respect

d d

ai k _-_ ajk: - ajk _-_ aik (A. 18)

The tensor in (A. 18) is skew-symmetric; the following paragraph will impute a physical

meaning to this tensor.

Differentiate (A. 17) with respect to time and use (A. 15)

d . [d ] d . (A. 19)d-tYi = d-t aji xj + aji_ xj = Eij k _2j Yk
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Let w i be the components of _j in the coordinate system xi; i.e.

wj = ajk P'k or 12.j = akj w k

Assume that the point xj moves with the body so that

d

d'-t xj = 0

Then, from (A. 17), (A. 19), (A. 20), and (A. 21)

[d aji]xj -Eij kanj w napkxp=0

or, changing the dummy indices

[ d ]
_ 0

Since (A. 22) must be true for arbitrary xj, it follows that

d

d-t aJ i = ¢imk anm ajk Wn

From (A. 23) it follows that

d

api _ aji : Eim k api a m ajk Wn

=¢pnj Wn =-Epjnwn

(Note that in going from (A. 24) to (A. 25) use has been made of the fact that

Eimk api aura ajk =

_, av2 ap3

anl an2 an3

_1 _j2 aj3

= Epn j )

d
Thus, the skew-symmetric tensor aik o_J-77a'kcan be written as

d

aik_ajk= -Eij kw k

(A. 20)

(A. 21)

(A. 22)

(A. 23)

(A. 24)

(A. 25)

(A. 26)

(A. 27)
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APPENDIX B

OR THOGONALITY

Assuming that the order of summation and integration may be interchanged, (2.54)

becomes {after multiplying by _ij and integrating over the undisturbed free surface)

m=l n=l UFS

- °_1 / Xl qbij (x 1,x 2,L) dS- a 2 / x2 _bij(Xl,X2 ,L) dS
UFS UFS

-cbI / Ix2L-L2¢I (Xl,X2, L)l¢i j (Xl,X2, L ) dS
UFS

-o_ 2 / IxI L-L 2_b2 (Xl,X2, L)] _bij(Xl,X2, L) dS
UFS

-c_3 / [xlx2- L2 _:3 (Xl,X2, L)IdS
UFS

Consider

I = / _bmn (xi,x2 ' L) _bij (xl,x2, L) clS
UFS

L f [Kmn Kij ¢ij IdSKmn - Kij UFS t"-L-- ¢_mn ¢)ij - ¢_mn

{B. 1)

(B. 2)

(no sum on i, j, m, or n) but from (2.47), (B. 2) becomes

uJfF [ bOmn b_ijlI= L _ ¢_ij qbmn _x 3 dSKmn - Kij S 8x3

=- L ¢ijVk _¢bmn OmnVk_ dS
Kmn - KIj 8x k - 0x k (B. 3)
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The integration in (B.3) is over US, theUFSplus therigid walls, andis valid because
of (2.47). Use the divergencetheorem to write (B. 3) as

I= L U_V b [ b_mn 5_iJ]Kmn_Ki j _ _ij _x k qbmn dVbx k

= 0, for Kmn _ Kij , since _bmn is harmonic

Let

am n --

bmn --

hmn =

dmn --

emil =

fmn --

Xl _mn dS
UFS

L/ @2 dS
mn

UFS

x 2 _bmn dS

UFS

L/ 2qbmn dS
UFS

_bl Cmn dS

UFS

2
q_mn dS

UFS

_2 @mn dS

UFS

2qbmn dS

UFS

Xl x2 _mn
UFS

L 2 / 2_bmn dS
UFS

_3 _mn dS
UFS

_b2 dS
mn

UFS

dS

(B. 4)
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Thus, (B. 1) reduces to

L
_'mn (t) + a3 _mn = - al L amn - a2 Lb

Kmn mn

-_1[L2b_L2hmol-_2IL2_n-L2dmo]

or

_3[L_e_L2 !- - fmn

Kmn

_'mn (t) +_3 L _mn =-°ll Kmnarnn-a2Kmnbmn

-LKmn[°_-fmn]_3 (B. 5)

Consider the integral

f _biqbmndS: f _i L b_mn

UFS UFS Kmn bx3

dS (no sum on m or n)

_ L / {hi Vk b_bmn

Kmn UFS bXk

dS- L f _iUk_qbmn

Kmn US bXk

dS

By the symmetric form of Green's theorem

U_F _iqbmndS= L UJJS_bmn b_)idSs Km---n Vk b--_k
(B. 6)

Thus, from (2.33), (2.34), and (2.35)

_1 qbnm dS = 2 / x 3 u 2 _bmn dS
UFS LKmn US

(B. 7)
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2 / Xl V3 _bmn dS
/ _b2 _bmn dS= LK----_ US

UFS

(B. 8)

_b3 ¢mndS- L2 / x 2vl _mndS
UFS Kmn US

(B.9)

Define

L f (qbmn)2 dS7mn = V
UFS

From (B.4) and (B.7) through B.9)

Xl Crnn dS = V amnTmn
UFS

x 2 qbmn dS = V bran Ymn

UFS

V Kmn hmn 3/mn

x _bmn v2 dS = 2

US

x I _bmn v3 dS =

US

v Zmn

f x lx2 ¢mndS= VLemnYmn

UFS

f x2 ¢mnVl dS =

US

V Kmn fmnTmn

2

(B. lo)

(B.11)
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APPENDIXC

FORCES

The substitution of (2.53) into (2.57) yields

Fi = P -_35i3- °el 5ii - _2 5i2 (x2 5i3 x3 8i2 _ii ] _1

- (x I 5i3 +x35il-L2 _2_2-(x15i2
bxi ]

+ x26il - L2 _@31w3
bxi /

1 b_bmn ]-L _ K bt _'mn
m=l n=l mn

dV (C. 1)

Consider the integral of each term separately. The first one becomes

V

since _3 is independent of the space coordinates.

In the remaining integrals, write the integral over the actual volume as the sum of two

integrals, one over the undisturbed volume and one over the difference between the

actual volume and the undisturbed volume. Since each term contains a multiplicative

factor of _i or _i' the second integral will be neglected in keeping with the neglecting

of second-order infinitesimals. Thus, the volume integrals become integrals over the

undisturbed volume, and the second and third terms in (C. 1) may be written as

p/ ]-OtlSil-OL25i2 i dV=-pVot16i1-PV(x25i2 (C. 2)
V

Since the origin of the x i system was chosen at the center of gravity of the fluid

x idv= 0 (C.3)

UV
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Consider

UV

dV= dS (by Theorem I)

_X.

= jf_bk--!uj dS
US bxj

Ther efor e

UV 5x---T dV =

= / xi 5_bk
US _ uj dS

2x3 u2
x i -- dS

US L 2

(by Theorem HI)

(from (C. 4) and (2.33))

(c.4)

L 2 _2 (xi x3) dV
(by Theorem I)

Also

___2/
L 2 5i2 x 3 dVUV

_2

/ _ dV= /x i
US

UV

2 x I P3

L 2

dS

=0

(from (C. 4) and (2.34))

(c. 5)

L 2 5-x3 (xi xl) dV
(by Theorem I)

= -- 5i3 x 1 dV = 0
L 2 UV

(C. 6)

553 2x 2 Plf
UV US L 2

dS (from (C. 4) and (2.35))
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_¢3 2 u/vdV =-- --(x ix2) dV
UV L 2 5Xl

(by Theorem I)

= _-_ 5il x 2 dV= 0
(c. 7)

Thus, from (C.4) through (C.7), the integrals of the fourth, fifth, and sixth terms of

(C. 1) vanish.

Consider

_$mn dV= / ¢mnvidS
UV bxi US

(by Theorem I)

bx i

/ /
US US

dS (by Theorem Ill)

- Kmn / x i _bmndS
L

UFS

Thus, from (C. 8) and (B. ii)

5 q_mn Kmn_dV -

UV 5xl L
- _ V amn 7m n

(from (2.47)) (c.8)

(C. 9)

b_bm n KmndV =

UV 5x2 L
V bmn _mn (C. 10)

/ 5@m-----nndV = / x3

UV 5x3 US

5¢
mn

Vj 5xj
_dS

/ LVj_
US

5_mn

5xj
dS

/L_

UV

52 Cmn
dV = 0

(from (C. 8))

(from (2.47))

(by Theorem I and (2.47)) (C. 11)
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Substitute the values of these integrals into (C. 1) to get, letting M = pV

_=
F i -Moli-M _ _ _'mnTmn(amnSil+bmn6i2)

m=l n=l

(c.12)
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APPENDIX D

MOMENTS

Substitution of (2.53) into (2.59) yields

Ti=P/EijkXj [-a35k3-O_lSk1-a26k2-(X28k3+X35k2
V

L2 5_bl_ C_l-(Xi6k3 x 3 L 2 5_b2- 5Xk/ + 5k1- _--Xk) cb2 - (Xl 6k2

+ _ L2 bq)3_c_3_L _ _ 1 bqbmn 1x25kl 5Xk/ m=l n=l Kmn bXk "_mn dV
(D. 1)

Consider the first term

D/- °l 3 Eijk xj 8k3 dV : - D °_3/¢ijk
V V

5(xj x3)
dV

bx k

f
dS

- P c_3 J(ijk xj x3 Yk
S

(by Theorem I) (D. 2)

Write the surface integral in (D. 2) as the sum of two integrals, one over the undisturbed

surface and the other over the difference between the actual surface and the undisturbed

surface.

Eij kxj x3v k = J Eij kxj 5k3
f

dS dV 0 (see (C.3))

US UV

f f f

J Eij kxj x3v kdS= J Eij kxj x3v kdS- J
S-US FS UFS

EijkXj LV kdS

= / Eij k xj _7Yk dS (D. 3)
UFS

(In deriving (D. 3) the difference between the actual liquid surface and the undisturbed

liquid surface on the walls of the tank has been neglected, and, since W is considered

to be small, the integral on the right side of (D. 3) is over the undisturbed free surface

instead of the actual free surface. This is in keeping with the previous assumption to

neglect products of infinitesimals. )
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Substitutethevalue of _7from (2.49) into (D.3), andinterchangethe orders of integra-
tion andsummationto obtain

-P_3 S
UFS

_ijk xj _ Yk dS = -p _3 S_mn

m=l = UFS
Eij 3 xj _bmn(Xl,X 2, L)dS

=-Pa3 m=l£ n=l_mn[ 6il Sx2_bmn(xl'x2'L)dSUFS

-6i2f Xl _bmn (Xl, x2, L)dS ]
UFS

=-Pa3 £ £ _mn[6il bmnvymn
m=l n=l

- 6i2 amn V Tmn] (D. 4)

The integrals of the second and third terms are zero, since the origin of the xi-system is

located at the center of gravity of the liquid. The volume integrals of the remaining terms

are taken over the undisturbed volume for the same reasons as given in Appendix C.

Consider the integral of the fourth term

D 5_91Ii, wl = [_ij3 xj x 2 +(ij2 xj x3l dV- L 2 i ¢ijk xj _--xxk
UV

dV

: S ['ij3xj x2+,ij2 xj x3i dV- L27 ¢ijkXj _blv kdS (by TheoremV)
UV US

Thus

2 2 L 2
il,Wl= f (x 2 - x3)dV- S (x2v3 - x3 Y2)_b IdS

UV US

2 _ x 2 L 2 5@1
= S (x 2 3 )dV- f Vi x 2 x 3 dS

UV US _xi

+ 2 L 2 S x3 Y2 _1 dS (by Theorem IV)
US

2 2 L 2 2x3v2 dS
= S (x2 - x3)dV- S x2 x3 L_
UV US

+ 2L 2 S x3v2 4bl dS

US

(from (2.33))

D-2



2 2)dV - 2 / 5 2
Ii'wl: / Ix2 - x3 _2 (x2 x3)dv

UV UV

+ 2 L2/ x3v 2@1 dS

US

(by Theorem I)

22:/(x2+x3)_v _/x _v+2_2/x_2_ _s
UV UV US

(D. 5)

Define Ill = pI1,

I2, Wl =

Wl" Similarly

/ -x lx 2 dV- L 2 ] (x 3yl - XlV3) _01 dS

UV US

5_bl dS
/ -x 1 x 2 dV- L 2 /Yix3 Xl 5x---T
UV US

+ 2 L2f x 1 v 3 _1 dS (Theorem IV)
US

2 x 3 Y____2

/-XlX2dV-L2/X3Xl L 2
dS

US

+ 2L 2 / x 1 u 3 _b1 dS
US

(from (2.33))

f
L 2

f
=- J xI x2 dV+2 ff xI v3 _bI

dS

UV US

(Theorem I)

Define I21 = -PI2'wl" Finally

= / x I x 3 dV- L 2 / (x lv 2 - x 2vl){) 1 dS
I3, coI

UV US

dS+ 2 L 2./X2Yl@ ldS:/_lX_ dV-_2/_x_x_._x_
UV US US

2 x3 v 2

= / XlX3dV-L2fXlX2 L_dS+2L2/X2Vl_bldS
UV US US

= / Xlx3dV-2/_'-_- L2/X2Vl_bl(x I x2x3)dV + 2 dS
UV UV bx2 US

=-/ x 1 x 3 dV+2L 2 f x 2v 1 _b1 dS

UV US

(D. 6)

(Theorem IV)

(from (2.33))

(Theorem I)

(D. 7)
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Define I31 = -p I3,w1.

Consider the integral of the fifth term

Ii, w2= _Uv[¢ij3XjXl
+ eijl xj x3] dV- L 2 /

UV

= / I_ij3 xj Xl
UV

+ ¢ijl xj x31 dV - L 2 / _ijkXj_b2 yk dS
US

(Theorem V)

Thus

I1, w 2 x x2 dV - L 2 / (x 2_3 - x3v2) q92 dS
UV US

xI x2 dV- L2/yix2 x3 5@2 L2
UV US _x i as +2 US/x3v2_ 2 as

2 xI v 3

f x 1 x 2 dV- L 2 / x2 x3 L2 dS+2L 2/x 3y2_2dS
UV US US

b

: / XlX2dV-2/ _x (XlX2X3) dS+2L2/x3V2@2dS
UV US 3 US

=- / x lx 2dV+2L 2 f x3v 2_2ds

US US

(Theorem IV)

(from (2.34))

(Theorem I)

(D.S)

Define I12 = -p I1,¢o 2. Similarly

I2, w 2 = /
UV

=/
UV

2 2 2
(-x 1 +x3)dV-L f(x3v 1-xlv3) l_2dS

US

2 2 L 2 _2 L 2 (Theorem IV)
(-Xl +x3)dV- / ViXl x3 _-x dS+ 2 f XlV3_2dS

US l US

2 xIY 3

(-x}+x:) dV-L2/ XlX3--_dS+2L2/XlY3_2dS (from (2.34))
US US

b (x2x3)dV+2 L 2dv ds
UV UV US

(Theorem I)

= f 2 2 L 2(xI +x3)dV-4/ x2dv+2 fx Iv3_2ds
UV UV US

(D. 9)
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Define122= PI2,0)2" Finally

13, 0) 2 =
-x2x 3 dV- L 2 / (xI V2 - x2 Vl)_)2dS

UV US

b#_2 L 2
/ -x2x3dV-L2/ViXlX2 dS+2 /X2Yl_2dS
UV US _ US

2 x I V3
/ -x 2x 3dv-L 2/x Ix 2 dS+2L 2/x 2v 19 2dS
UV US --_ US

=-.f x 2x 3dv+2L 2 f x 2v 192dS
UV US

(Theorem I)

(Theorem IV)

(from (2.34))

(D. 10)

Define I32 = -PI3,co 2.

Consider the integral of the sixth teIm

li,0)3 = / (_ij2XjXl +CijlXjX2) dV-L2/ EijkXj d_93_dV
UV UV dXk

= / (_ ij 2 xj x I + (ij I xj x2) dV - L 2 / ¢ ijk xj _3 Yk dS
UV US

(Theorem V)

Thus

Ii,0) 3 = f -x3xl dV-L2f (x2V3-X3V2)_3 dS
UV US

b_3'dS + 2 L 2 / x3 v2 _3 dS (Theorem IV)
= /-x 3 x I dV-L 2 f v ix 2x 3 6x--_1

UV US US

2 x 2 ul. L2
=f-x3xldV-L2fx2x3 L2 dS+2 /x3u2_3 dS (from (2.35))

UV US US

=-/ x3x IdV+2L 2fx3u2_3dS

UV US

(Theorem I)

Define I13 = -PI1,0)3" Similarly

I2,0) 3 : f x3x2 dV-L2 /(X3Ul-XlV3) _3dS
UV US
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5qJ3
/ x3x2dV-L 2 fViXlX3_x;dS+2L'_fXlV3_3 dS
UV US US

2x2vA 2
f x3x2dV-L 2 fxlx 3 L 2 dS+2L /XlV3_3dS
UV US US

V 5 L2= / x3x2dV- 2 _ (x I x2x3)dV+ 2 f Xl v3_3 dS
UV US

=- / x 2x 3dV+2L 2fx lv 343dS

UV US

(Theorem IV)

(from (2.35))

(Theorem I)

Define I23 = -PI2, co3. Finally

2 2 L 2 v 2 x 2 dSI3 cO3 = f (x I -x2)dV- /(x I - Yl)_3
' UV US

2 2 L 2 '3°/3 L 2/x 2 v I dS (Theorem IV)
= / (x I -x2)dV- /vix 1 x 2 _x i dS _-2 93

UV US

2 2 L 2 2 x 2 t_______l
=/(x1_x2)d V- fxl× 2 L 2 dS+2L2/X2VlqJ3dS (from(2.35))

UV US

_ 2 2uv uv °Xl (xl x2 ) dV + 2 L2f x2 v 1% dS

2 dV + 2 f x 2 V 1 9 3 dS= / (Xl+X2)dV-4/ x22 L2
UV UV US

(Theorem I)

Define I33 = PI3,
o_3"

Consider the integral of the last term, and assume that the order of integration and

summation may be interchanged.

Ii,mn = / (ijkXj dV= f (ijkbx k(xjqSmn )dV
UV UV

= f eijkXj _mnVk dS
US

(Theorem V)
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Thus

I1,mn= / (x2v 3-x3v2) qbrnndS

US

b_bmn_ dS - 2f
= f_ix2x3 5xi

US US

= V Kmn Ymn (bmn - hmn)

x3v 2 ¢5mn dS (Theorem IV)

((2.47) and (B. 11))

Similarly

12, mn = f (x3u 1 - XlV3) qSmn dS
US

m_______n
f

dS - 2 ] x 1 u3
= fu ixlx 3 5xi qSmn

US US

= V Kmn _'mn (amn - dmn)

dS (Theorem IV)

((2.47) and (B. ii))

Finally

13,mn = f (XlV2 - X2Vl) dS
US

0qSmn dS - 2 rJ X2Ul ¢Smn dSf
= jUiXlX2 bx----_

US I US

= V Kmn Ymn (emn - fmn)

(Theorem IV)

((2.47) and (B. ii))

Combining the values of the various integrals into (D. 1) yields

Ti=-_l [Ill6il -I215i2-I315i31-_2 1-I126i1+I226i2-I326i31

-_ I-I_il-'_i_.+'_%]-M 2 2 Ymn[IL(bmn-hmn)'_mn
m=l n=l

+ a3 bmn _mn] 5i1+ IL (amn - dmn)'_mn - c_3amn _mn} 5i2

+  mo'/mnI%I
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APPENDIX E

CENTER OF MASS NOT COINCIDENT WITH

CENTER OF ROTATION

The substitution of (3.34) into (3.35) yields

v/I [ lF'_ = P - _3 - c51 5i2 x2 5i3 _x i
1 8i3 - _28i2 (x3 -2 L1) + ' - L2b_l (xl'x2'x3 L1)

- i_2 Z _*mn(_,_,x_-I_) ]m=l n=l Kmn 5x[ "_mn dV

=-P(_3 V8i3- _2PV8i2 - P¢51 V_[8i2 (x3 - 2 L1) + x2 8i2

J l l

- L2 _{(Xl'X2'7 x3- LI) ]dV
5x i

-PL _ _ _'mn 1 /_4_mn(X_.'x2'x;-L1 )
m=l n=l Km---_ V 5x[ dV

(E. 1)

As in the previous appendices, integrals will be taken over the undisturbed configuration

if a multiplicative factor which is assumed to be small occurs. Consider

PC bl V_[Si2(x3-2L1)+x25i2 -L2 5_bi(xi'x2'x3-L1)bxi-7 ]dV

= d)1 l-2 L 1pVSi2 +p8i2/x_ dV+PSi2/x_ dV
V V

NOW

/ x; dV=./ (x 3 + L1) dV: L 1
UV UV

' dV= f x2 dV= 0x 2
UV UV

V
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-- 5xi dV=O
UV 1 UV

by (C. 5)

and

f _*n_(x;,x;,x_- _)
uv _x[

dV = / 5_bmn(Xl'X2'X3)

UV 5xi

dV

K VYmnmn
L [ amn 5il + bmn 5i2]

Thus

t

F i = - oz3 M 5i3

+ bmn 6i2[

- _2M 6i2 + _1 L1 M 5i2
-M£ n____"_mnYmn [amn 6il=

(E. 2)

The moments are given by

1 =P ¢ijkXj -°Z35k3-°t25k2-Wl 5k2(X3-2L1)+x'

] n_l 5_bmn 1 ]

L25_; _ '- _-2 =--7 - _'mo_V
5x k 5x km=l = Kmn

(E.3)

The integrals will be taken over the undisturbed configuration if a multiplicative factor

which is assumed to be small occurs. The integral of each term will be considered

separately.

Consider the integral of the first term

(x;x_)
V_ x' dV = -pa 3/eij k 5x_ dV (E.4)-P(_3 ¢ij3 j V

---oo.i..;-°°'
+sf-U__jkx;x_vt _s]

t t ?

¢ijk xj x 3 v k dS
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But

XtX t t
_ijk j 6k3 dV= f ¢ij3 xjdV= 0

US UV UV

r ,.-

~pol 3 / eij k j x_v_dS -pot 3 ¢ijkXj x_v_dS
S-US

-UFS/ _ijkXjl(L+L 1)vk' dS]

= -PO_ 3 f ¢ijkX;(L1 + L+D)V_ dS
FS

+p_3 f ¢ijkXjS(L+L1)v _dS
UFS

= -poL 3 / _ijkX;Uv_ dS
FS

-P _3 / c.._ x-t 77 dS
Da J

UFS

= -P% f 'ij3"j ,7ds
UFS

: - 3MmZ:IZ= mo molbm- 'l- no ,21,E.5,
Consider the integral of the second term

-P_2 / ¢ij2xj ' dV= -0_ 2 f

UV
¢ij2xj dV -poz 2 / _i32 L1 dV

UV

= L 1 M c_2 8ii

Consider the integral of the third term

-p_o_ V,_)(x_-2LI)- _-_(xl,x;, x_- q)] ¢ijkx;dv

2L1)_k2÷x_._kaIdV- L2f e.._5'v_{ dS/
I US I_K !

(E. 7)
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For i = 1, (E. 7) becomes

-0,.1IsI'"'x_<x__,,.,>+_,,,x_._I,v-,.',,sS<x_.__x_,,_>o_dsi

- JVkX2X 3 _ dS
US

+2L2 S ' ' }x3_2 _ as
US

=_D_l[f(x2+x?)dV_21x2dV 2 L 2 851
UV 3 +L 1V- iYkX2X3--dS16-,, - _ US 5Xk

_1
L 2

£
- L 1 J VkX2 --

US _Xk

dS+
2L2 S x3v2_l dS+ 2L2L 1 fv2_ 1 <is}

US US

"-PWl{uv / (x22+x:)dV-2uv / x:dV+L12V-2UV_-xx2(/8 x2x:)dV

-L'L:fx2--_+2 S x3V2_bl dS+ 2 L2 L1 S X2.k
US L 2 bXk ]US UV

us <'.'>
For i = 2, (E. 7) becomes

-DWl[ IUV e213XlX2dV-L2S<x3";-x;v3)_IdSIus

:-P:I - f XlXg. dV-L2svl_x3xl_ dS+2L_" Sxlv31_l dS
UV US US

=-0:1 -S XlX2dV-L 2Svkx3xlb'--_kdS
UV US

b_l L 2 }- L2 SYkL1 8X--k dS+ 2 S XlV3@l dS
US US
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Use the boundary conditions on _1 to write this expression as

=-P?Ol {- f xlx2dV- 2 f x:xlu2dS-ZLl f xzv2dS
[IV US US

+2L2 / XIV3_1 clS]
US

Apply Theorem I to get

UV
x 1 x2dV+ 2pL 2 fXlV3¢ 1 as !

US

(E. 9)

For i = 3, (E.7) becomes

US

01}
US

=-0_1 - f xlx3dV+2L2fx2vlh dS}
UV US

(E. 10)

Consider the last integral in (E. 3)

, '-L 1)_mn (x_ x_,x 3

fov _x_ ',jk x;_v: f _ij_x;_n_
US

For i = i, (E.ll)becomes

f ¢ljkXj _bmnU k dS + f ¢132 LI _bmnY2 dS
US US

U_S 5_m= / ¢ljkXj (_mnVk dS - L 1 Vk x2 5---_ (iS
US

L 1 Kmn

= / ¢ljk xj _bmn Vk dS L f x2 _bmn dS
US UFS

= VKmn,mn[bmn-hmn] LI
- _ V Kmn bran _mn

(E. 11)

(E.12)
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For i = 2, (E. II) becomes

f
US

2jkXj @ran VkdS+ f ¢231 Ll@mnVl
US

dS

= f ¢2jkXj @rnnYkdS+ L 1 f
US US

= f ¢2jkXj @mnV kdS+ L 1 f
US US

= V Kmn Ymn (amn- dmn) +

-- dS

_bmn V 1 dS

5_bmn

x I Y k 5x k

L 1 Kmn

L V amn Ymn (E. 13)

For i = 3, (E.11) becomes

f ¢3jk xj q_rnn Vk dS = V Kmn Ymn (emn - fmn)
US

Combining the previous results in (E. 3) yields

m'=.i M L 1 _2 6il - Wl[ II_ 6il - I21' 6i2- I3_ 6i3]

m=l n=l

+ [[L (arnn-dmn) + Llamnl _'mn -

+ [L(emn-fmn) _'mn] 6i3]

where

Ill:P Ufv(X:+x:)dV-4D UVf x23 dV+ 2pL2 USf x3 v2 _bl dS+ L 2 M

121 =P f x2dV- 2D L2 f XlY3_bl

UV US

dS

z3 :p f Xl X3 dV-2p L 2 f x2v 1 '1 dS

U'V US

(E. 14)

(E. 15)

(E. 16)
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